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ASYMPTOTICALLY PENDULUM-LIKE PIOTIONS OF THE HESS-APPEL'ROT GYROSCOPE* 

YU.P. VARKHALEV and G.V. GORR 

Asymptotically pendulum-like motions of a heavy rigid body whose centre of 
gravity lies on the perpendicular to the circular cross-section of the 
gyration ellipsoid (the Hess-Appel'rot gyroscope) is investigated. 
Lyapunov's theorem is used to show that the initial position and initial 
angular velocity of this gyroscope can also be chosen such; that its 
motion will tend asymptotically, as time increases without limit, to 
rotation about the horizontal axis. Since in this case the initial 
conditions do not satisfy the invariant Hess relation, it follows that the 
results described cannot be obtained by direct generalisation of /l/ 
where the asymptotically pendulum-like motions were obtained for the 
special case of the Hess solution by constructing the phase trajectories. 

Various examples of asymptotic motions in the classical problem of 
the motion of a heavy rigid body with a fixed point are shown in /l-5/. 

Let the centre of gravity of a heavy xiqid body with a fixed point lie CVI the perpend- 
icular to the circular cross-section of the gyration ellipsoid constructed at the fixed point. 
We attach to this body a special coordinate system, and write its equations of motion about 
the fixed point in dimensionless coordinates /6/ 

z' = --zz, y’ = (a - a2)zz f yz - Y* (1) 

I’ = -(a - a*)zy T 22 - y* + VI 

v’ = OZVl - 01Y*. VI’ = “Y* - O*Y, vl’ = olv - OY1 

o=az+y, 01 = “*Y i 2, lop = a$2 

where =', I, 2 are the components of the angular momentum vector, 0, WI, ma are the components 
of the angular velocity vector, ~,v~.v% are the components of the unit vector indicating the 
direction of the force of gravity, o, 0% are the dimensionless parameters characterisinq the 
ratios of the gyration tensor components, and a dot accompanying the variable denotes differ- 
entiation with respect to time. 

Equations (1) have the following first integrals: 
.I? + n* (y2 + 9) f 2zy - 2v = 2E 12) 
Y'+Yl=+Yp'=l, zv + yv, +N,= k 

We shall use the same variables accompanied by an asterisk to write the particular 
solution of cl), describing the motion of a body about the horizontal axis, and the values of 
the constants of the integrals (2) of this solution. Then the solution will have the form 

*Prlkl.,Yatem.Mekhan .,38,3,490-493,1984 
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z* = y' = 0, z* = ‘p’/a,, v* = CDS ‘9, VI’ = --sin q’, v:* = 0 (31 
q’ = V-p cm cp - h (p = Za,, h = -2a,E’) 

(The integration constant of the angular momentum integral is obviously zero). 
The variational equations for solution (3) were studied in /6/ only from the point of 

view of their integration, and /7/ dealt with the problem of the Lyapunov stability of the 
solution in question assuming that the maximum deviation of the centre of gravity of the body 
from the position of stable equilibrium was small. Here we shall concern ourselves with the 
problem of investigating the conditions of asymptotic motions of the body which tend, as t_=, 
to the motion of a physical pendulum described, in the case of its rotation by (3), i.e. when 
E* > 1. Then from (3) we have 

sin + = sn (pt, k’), q’ 7 2pdn(pt, k') 

V- 
z 

(4) 

k’ = P= l/r 
P--h 

I+E*: ;! 

(sin v = 2 sn (pt, k')cn(pt, k'), cos 'p = i - 2 snz (pt, k')) 
Let the write the equations for the perturbations. As in /?/, we obtain 

t = I* T I*, Y = Y’ + =,v z = z* + y1 (5) 
Y = v* f y,, Vl = v1* + Y,, Y, = vL* i_ z3 

The variable 'p increases monotonically with time, by virtue of (4), and for this reason 
we shali use it as the rundamental variable, Substituting relations (5) into (1) and denoting 
differentiation with respect to p by a prime we obtain taking (3) into account. 

2,’ = - x 
i 

(6) 

z*’ = x za 
(a - a*) z, + zp - -g +- 

zg’ = $ [(cos ‘p + asin~)zl-t (sin o + a!coscp)zl j- 

Y2 (Ilf Wz) -Y3 (zz+ as) I 

Yl’ = $ [Y3 - (a - a<) qz.; + II* - r,Z] 

YA’ = _ s’n v 1 
I* YI + Y3 + F YIYI - 9 (+I + alz:) 

Y3’= _ 9 
1 1 

YI - Yz - Q=YIYl + 2 (12 7 w)r x = n, 

Let us consider a system, corresponding to the first approximation, and denote It by 

zL(l), I~(~), zJ(l), y,(l), y,(l), y3t1). As was said in /7/, this gives us two closed systems of differential 
equations. From (6) it follows that 

Integrals (2) also generate the integrals of (7) and (8) 

,1(l) ~0s 'p - zl(') sin q + z*~J(~) = c(I) 

'* 
XYl 

(II _ yt) =Jz), YC) ~0s T _ Yp) sin * = c(~) 

By virtue of relation v*+-v,*+v._~= 1 given in (2) , the constant co1 should be regarded, 
in the case of real motion, as zero. 

Let us denote by X(cp)=/l~~j/I, Y (cp) =I/y,jI/ the fundamental matrices, by X a vector with 
coordinates I19 Xl, XI and by 5 the vector with coordinates yl, Y,. y,. Thenthegeneral solutions 

of (7), (8) will be 
x=X(v)b, y=Y(rp)c (9) 

where b is a vector with coordinates b,,b,,b,,e a vector with coordinates Cl! 511 CS, and 

L,, = e-up, I,? = 0. 215 = 0, ill = xz*eX’I,, z2, = g$- P (10) 

zz3 = - 2Yg’trcx’CI,, q1 = - 2$?- c-UT $_ *sin q@TIl 
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As we already said, since y,(l)eoscp - y,(‘)&nrp=O , the integration constant CJ should be taken 

as zero. Retention of this constant in formula (9) does not affect the subsequent investiga- 

tions and is convenient for applying the formal Lyapunov apparatus. 

Since system (7), (8) is Correct (its coefficients are functions of the period 2x), there- 
fore we shall use Lyapunov's theorem on the existence of solutions of (61 in the form of 

series in increasing powers of the variables 45=~ae-Zsq , by considering the eigenvalues of 

the first approximation system (71, (8). 

Let US denoteby u the vector with coordinates z,, +, I~, y,, yz, yJ. Then the general solution 

of the system (71, (8) will be 
"(1) = b,up) + b,ut) -j- b,uf’ + c,uf) -+ c@) + c# (11) 

Ul@) - (111, Z:el, fill 0, 03 01, u,(l) = (x1*, z**; z’s*, 0, 0, 0) (121 

II,(‘) = (z,,, T&39 TJ3, 0, 0, Oh UP) = (0, 0, 0, Yll, YZll Yd 

u-(l) = (0, 0, 0, YlZ> Y,,. Ypt!. .I %(') = (07 07 0, $131 Yzsr Y&T) 

System (12) represents a normal system of solutions. Using the definitron and properties 

of the Lyapunov eigenvalues and (lo), we find the eigenvalues of the solutions (12); the eigen- 

value of the solution u,(" is x>o, that of ~~(1) is x,ana the eigenvalues of the remaining 

solutions are all zero. According to the Lyapunov theorem the system of equations for the 
perturbations (6) has a solution of the following form: 

where Ls[‘), SI:.(“ are continuous functions of cp independent of the constant b, , whose eigenvalues 

are not less than zero. 

The Lyapunov-Poincarg method can be used to obtain relations (131. 

system of solutions the only solution with a positive eigenvalue is U,(l), 

Since in a normal 

we must put in (91, 

(11) b, = b, == cl = cz = c3 = 0. 

Let 
); = &I +#) +, . . I ,~~~ I ., ., y = p .+ yl-2) j _. I pw + 11 (14) 

where xfp’iJ, yO!lJ are the m-th order terms. Then y(l) = 0, dl) = b, (+, tlL, Zig). Let us denote by x-l (cp), 
Y-l(cp) the matrices which are inverses of the fundamental matrices s(cp), y(g). Here we have 

yu* = -*I,, yl?*= -$ sin cp - xVa + xD co3 q1, 

OX 
?a* = x* co5 fp - x2 sin cp14, ycl* 2= -$ ) YLp = f , y:s* = 0 

Yd = 0, Y33 = - cas cp, yJ3* = sin q3, 2*=x~pcoscp-~ 

The terms of the expansions (141 at m> L are found from the recurrent relations 

x@'=X(lp)r x-l&) f(m-l) (P)dQ, y(m) - Y(cp)i Y-'(cp) g'm-"(Cp)dQ 

cc@ W . 

v (m-11 = @+l), $+I), @-‘I), gtm-U = ($-I), g:m-O, @“-lb)) 

and 'Sle elements of the matrices X-I,Y-1 are determined by (15). 
By virtue of the initial system (6) we have the following relations: 
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R3 
(n-1) = + c [_ y~)yfw) ,f @’ p-d + arp) 

2 )I 
PI1 

Since series (13) converge absolutely for all e>ea and b,<b*, it fol lows that when 
e--00, I*- 0, ys - 0 (8 = 1, 2, 3). This means that we can always choose the initial position and 
initial angular velocity of the Hess-Appel'rot gyroscope in such a manner, that its motion 
will tend, as time increases without limit, asymptotically to rotation about a horizontal 
axis, Such motions are called asymptotically pendulum-like motions. 

We note that the class of asymptotically pendulum-like motions of the Hess-Appel'rot 
gyroscope described by relations (13) does not include the Hess solution as a special case. 
Indeed, the latter solution for the system of differential equations (6) is characterised by 
the invariant relation t,= 0. By virtue of the first equation of this system we find that 
if the relation zl=O holds at the initial instant, it holds at any other instant. For the 
class Of asymptotically pendulum-like motions of the Hess-Appel'rot gyroscope and constant b, 
is not zero, and therefore zl#O. 
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INTERACTION OF THIRD-ORDER RESONANCES IN PROBLEMS 
OF THE STABILITY OF HAFIILTONIAN SYSTEMS* 

L.G. KHAZIN 

The problem of the stability of the equilibrium state of a neutral 
Hamiltonian systems (all eigenvalues of the linearization matrices are 
purely imaginary) is considered. A stability criterion is obtained for 
systems with several third-order resonances. 

1. Formulation of the problem. We shall study the stability of the equilibrium 
state of an autonomous Hamiltonian system of equations 

i,’ = aH (I. ?I) Ya' = - m (2. Y) - ; 
*Y, al 1 a=i,...,N (1.1) 

If (2, Y) = H* (I, Y) + H, (I, Y) +=... 
I = (II, . . ., IN); Y = (Y,. ., YN) 

Here H~(=,~) denotes the homogeneous k-th degree polynomials, 1' is the linearization 
matrix of the system, (l.l), SF) are the eigenvalues and Rek(F) = 0. 

We shall use the following definitions. 
The system 
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